Mechanical stability of single DNA molecules.

نویسندگان

  • H Clausen-Schaumann
  • M Rief
  • C Tolksdorf
  • H E Gaub
چکیده

Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (</=10 mM NaCl), while high ionic strength buffers (1 M NaCl) stabilize the double-helical conformation. The mechanical energy that can be deposited in the DNA double helix before force induced melting occurs was found to decrease with increasing temperature. This energy correlates with the base-pairing free enthalpy DeltaG(bp)(T) of DNA. Experiments with pure poly(dG-dC) and poly(dA-dT) DNA sequences again revealed a close correlation between the mechanical energies at which these sequences melt with base pairing free enthalpies DeltaG(bp)(sequence): while the melting transition occurs between 65 and 200 pN in lambda-phage DNA, depending on the loading rate, the melting transition is shifted to approximately 300 pN for poly(dG-dC) DNA, whereas poly(dA-dT) DNA melts at a force of 35 pN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum mechanical study of electronic and structural properties of methyl benzoate in interaction with boron nitride (BN) nanotube

To determine the non-bonded interaction between methyl benzoate and boron nitridenanotube, we focused on an armchair single-wall boron nitride nanotube (9,9) With length 5 angstroms.The geometry of molecules was optimized using B3LYP method with 6-31g* basis set. Also reactivityand stability of methyl benzoate and boron nitride nanotube (9,9) was checked. Then NBO, FREQ,...

متن کامل

A quantum-mechanical investigation of functional group effect on 5,5'-disubstituted-1,1'-azobis(tetrazoles)

The present work reports the detailed B3LYP/6-311++G(d,p) study of most stable transand cisconfigurations photoisomerization in the core system of computational photochemistry-the 5,5'-disubstituted-1,1'-azobis (tetrazole) molecules. All computations were carried out in gas phase attemperature 293.15 K and pressure 1 atm. Firstly; the potential energy surface (PES) of the groundstate of the mol...

متن کامل

Dynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory

This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...

متن کامل

Mechanical Stretching and Light Scattering on DNA

In this chapter we will present basic techniques to modify DNA molecules with oligonuleotides, silanize surfaces and finally endgraft modified DNA molecules specifically on functionalized surfaces. Furthermore we will present an experimental setup with which we studied the mechanical stability of the DNA-surface anchoring by stretching the molecules and observing the rupture lengths. We present...

متن کامل

Stability Modification of SPR Silver Nano-Chips by Alkaline Condensation of Aminopropyltriethoxysilane

The Silver SPR chip was modified by alkaline-silane condensation with aminopropyltriethoxysilane (APTES) in NaOH aqueous solution at different times. Silver sputtered slides coated with APTES were immersed in NaOH solution, enabling us to produce silver surfaces homogeneously covered with APTES. The surface properties of grafted APTES on sputtered silver surface as a occasion of time were studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 78 4  شماره 

صفحات  -

تاریخ انتشار 2000